Green AI

Green AI: the new trend in development

#BLOG

What is Green AI? 🥬

Green AI focuses on building smarter models that use less energy, delivering solid performance without wasting resources. It’s about solving problems effectively while keeping the environmental impact as low as possible.

Green AI 3Qcode


Intro

The rapid evolution of AI has brought transformative benefits across industries, from healthcare to autonomous vehicles. However, this growth comes with an often-overlooked cost: the environmental impact of training and running large-scale AI models. Enter Green AI, a burgeoning movement focused on reducing the carbon footprint of AI systems. This approach champions efficiency, sustainability, and a conscious effort to make AI development less resource-intensive.

Green AI

AI-generated photo (DALL-E)


The environmental cost of AI

Training state-of-the-art AI models like OpenAI’s GPT or Google’s BERT is an energy-intensive process. For instance, a study by the University of Massachusetts Amherst highlighted that training a single large NLP model could emit as much carbon as five cars over their entire lifespans. This staggering figure stems from the vast computational power required for training, which consumes enormous amounts of electricity.

For example:

  • OpenAI GPT-3 required an estimated 1,287 MWh of energy to train, producing more than 550 tons of CO₂.
  • Google’s DeepMind AlphaGo reportedly consumed thousands of GPUs and took months to train, further exemplifying the resource-intensive nature of cutting-edge AI research.

These figures raise an urgent question: can we make AI smarter without making it more destructive to the environment?


What is Green AI?

Green AI emphasizes energy efficiency and environmental sustainability in AI development. Instead of blindly pursuing higher accuracy through increasingly complex models, researchers and engineers aim to minimize computational resources while achieving similar or slightly reduced performance levels.

This philosophy is encapsulated in two main approaches:

  1. Efficiency-centric Design: Building models that consume less energy by optimizing architecture, using efficient hardware, or training on smaller datasets.
  2. Energy-aware Metrics: Developing frameworks to measure the energy and carbon costs of AI research, encouraging transparency and accountability.


Examples of Green AI in action

Several companies and research institutions are pioneering Green AI practices:

1. DistilBERT by Hugging Face

Hugging Face introduced DistilBERT, a compact version of BERT that is 40% smaller and requires 60% less computation while retaining 97% of the original model’s performance. By distilling larger models into smaller ones, researchers drastically reduce the energy costs associated with training and deployment.

2. TinyML

TinyML focuses on deploying machine learning models on low-power devices like microcontrollers. Applications include wildlife monitoring, smart agriculture, and IoT solutions. These models are not only energy-efficient but also enable real-time, decentralized processing, reducing the need for energy-hungry cloud infrastructures.

3. Google’s TPU Pods

Google’s Tensor Processing Units (TPUs) are designed to be energy-efficient. Paired with their Carbon Intelligent Computing Platform, Google schedules resource-intensive AI tasks during periods of renewable energy availability, significantly reducing carbon emissions.


AI-generated photo (DALL-E)


Emerging tools and techniques

The Green AI movement has inspired the development of tools and methodologies to reduce AI’s environmental impact:

1. Carbontracker

This open-source library estimates the energy consumption and CO₂ emissions of AI models during training, empowering developers to make informed decisions.

2. Pruning and Quantization

Techniques like model pruning (removing unnecessary parameters) and quantization (using fewer bits for weights) enable AI systems to perform efficiently without sacrificing accuracy.

3. Energy-efficient Frameworks

Frameworks like PyTorch Lightning and TensorFlow Lite now include features optimized for Green AI, such as hardware acceleration and lightweight inference capabilities.


Challenges and criticism

Despite its promise, Green AI faces several challenges:

  • Performance Trade-offs: Reducing computational resources may slightly impact model performance, raising questions about trade-offs in applications like healthcare or safety-critical systems.
  • Adoption Barriers: Many organizations are hesitant to shift focus from achieving state-of-the-art results to prioritizing efficiency metrics.
  • Transparency Issues: Not all companies disclose the environmental impact of their models, making it hard to benchmark progress in the Green AI movement.

Adopting Green AI principles is not just about saving energy; it’s about creating a sustainable AI ecosystem that benefits both humanity and the planet. With climate change posing an existential threat, every industry, including AI, must evaluate its role in reducing carbon emissions.

Moreover, Green AI aligns with broader trends like corporate sustainability goals, ESG (Environmental, Social, and Governance) investing, and net-zero initiatives, making it an attractive proposition for forward-thinking organizations.

#BLOG

The road ahead

 

Green AI is not a trend but a necessity. As computational demands grow with the development of larger models, the AI community must innovate to ensure that progress doesn’t come at the expense of the environment. By prioritizing efficiency and sustainability, Green AI can pave the way for a future where artificial intelligence supports—not compromises—the health of our planet. 

Let’s remember: smarter AI should also mean greener AI.

Green AI 3Qcode

PRZECZYTAJ INNY ARTYKUŁ

Jak firmy zyskały dzięki Mendix – 3 case study

Poznaj trzy przykłady firm, które dzięki low-code Mendix przyspieszyły rozwój, zautomatyzowały procesy i zwiększyły efektywność działania.

14 min

Low-code

Daniel Król
28 lipca 2025

Low-code z Mendix

Jako certyfikowany partner Mendix w Polsce pokażemy Ci, jak technologia low-code zmieni konkurencyjność Twojej firmy.

10 min

Low-code

Jakub Strychowski
1 lipca 2025

3Qcode na wydarzeniach No-Code i Low-Code w 2025 roku

Podsumowanie pierwszych 6 miesięcy roku i naszej obecności na branżowych wydarzeniach no-code/low-code.

7 min

News

Daniel Król
23 czerwca 2025

Gartner TOP 10 strategic technology trends for 2025

Gartner’s leading technology trends for 2025 serve as a guiding compass to help your organization navigate the road ahead with confidence and resilience.

10 min

TOP 10

Daniel Król
3 marca 2025

What is Webflow? Features and cost analysis

Webflow is a no-code website-building platform designed to empower individuals and businesses to create professional websites without delving into traditional coding.

10 min

No-codeAI

Mariusz Manka
9 stycznia 2025

O3 model redefines AI capabilities

OpenAI’s latest model, codenamed O3, has achieved results surpassing human performance in a benchmark test, setting a new standard for AI capabilities.

12 min

AI

Jakub Strychowski
9 stycznia 2025

OpenAI’s „12 Days of OpenAI” campaign

“12 Days of OpenAI” campaign is a series of daily product releases and updates that showcase groundbreaking advancements in AI, designed to inspire and empower users around the world.

14 min

IT stories

Mariusz Manka
17 grudnia 2024

Jak pracujemy zdalnie w 3Qcode

Płyniemy tą łajbą 100% zdalnie, dowiedz się, jak wygląda nasza współpraca zespołowa. Posłuchaj głosu deweloperów!

14 min

IT stories

Daniel Król
1 grudnia 2024

3Qcode as a speaker at No Code Days 2024

Jacek Zawadzki, the CEO of 3Qcode, was a featured speaker at No Code Day 2024. He shared insights on leveraging no-code platforms to drive innovation and streamline digital transformation.

5 min

EventsNews

Daniel Król
25 listopada 2024
Act One by Runway

Act One by Runway unlocked for everyone!

Act-One creates engaging animations from video recordings and voice input, transforming them into dynamic, visually captivating, and impactful content.

13 min

NewsAI

Daniel Król
5 listopada 2024
3Qcode Mendix partner

3Qcode officially becomes a Mendix partner in Poland

We’re excited to announce that 3Qcode has officially joined the Mendix partner network in Poland, enabling us to support businesses in accelerating their digital transformation journey.

10 min

Low-codeNews

Daniel Król
3 listopada 2024

Top 5 no-code/low-code platforms in 2024

These platforms empower even non-technical users to create business solutions, using no-code and low-code technologies for quick development without deep programming skills.

15 min

No-codeTOP 10

Pola Stefaniak
17 października 2024

IT Studies: a necessary ticket to a career or just a formality?

I will focus on my personal observations and experiences to answer the question: Is a degree in IT truly necessary, or just one of many tools on the road to success?

15 min

IT stories

Mariusz Manka
20 września 2024

Bielik – AI made in Poland

This is a Polish language model from the LLM (Large Language Models) category, with a potential of 11 billion parameters! To „train” Bielik, two of the fastest supercomputers in Poland.

10 min

AI

Daniel Król
1 września 2024

10 examples where AI proved to be a game-changer

Check out specific examples where AI has truly been a game-changer, transforming industries ranging from archaeology to agriculture, with unprecedented efficiency.

10 min

TOP 10AI

Daniel Król
21 sierpnia 2024

Jakie są wady i zalety no-code?

Poznaj wady i zalety no-code. Ekspert od AI wyjaśnia na praktycznych przykładach, kiedy warto korzystać z platform bez kodowania.

12 min

No-code

Pola Stefaniak
9 sierpnia 2024

TOP 10 narzędzi AI dla marketingu

Odkryj 10 najlepszych narzędzi AI w marketingu, z których korzystają największe marki, aby przyspieszyć wzrost i zaangażowanie klientów.

11 min

TOP 10AI

Daniel Król
9 sierpnia 2024

No-Code na targach logistycznych MTTSL 2024

Jako 3Qcode pojawiliśmy się na targach MTTSL, aby promować rozwiązania No-Code dla branży logistycznej w Polsce.

5 min

Events

Daniel Król
18 kwietnia 2024

Copilot od Creatio – synergia GenAI i No-Code

Odkryj Copilot Creatio – połączenie GenAI i platformy no-code, które pozwala szybciej tworzyć inteligentne automatyzacje i procesy.

13 min

AI

Pola Stefaniak
25 czerwca 2024

Na czym polega metodologia Agile?

Dowiedz się, na czym polega metodologia Agile i jak może skutecznie usprawnić zarządzanie projektami w Twojej firmie.

10 min

Big Data

Jakub Strychowski
15 czerwca 2023